Files
blog/content/posts/15-a-beautiful-gitops-day-5/index.md

815 lines
21 KiB
Markdown

---
title: "A beautiful GitOps day V - Monitoring and Logging Stack"
date: 2023-08-23
description: "Follow this opinionated guide as starter-kit for your own Kubernetes platform..."
tags: ["kubernetes", "monitoring", "logging", "prometheus", "loki", "grafana"]
---
{{< lead >}}
Use GitOps workflow for building a production grade on-premise Kubernetes cluster on cheap VPS provider, with complete CI/CD 🎉
{{< /lead >}}
This is the **Part V** of more global topic tutorial. [Back to guide summary]({{< ref "/posts/10-a-beautiful-gitops-day" >}}) for intro.
## Monitoring
Monitoring is a critical part of any production grade platform. It allows you to be proactive and react before your users are impacted. It also helps get a quick visualization of cluster architecture and current usage.
### Monitoring node pool
As well as storage pool, creating a dedicated node pool for monitoring stack is a good practice in order to scale it separately from the apps.
You now have a good understanding of how to create a node pool, so apply next configuration from our 1st Terraform project:
{{< highlight host="demo-kube-hcloud" file="kube.tf" >}}
```tf
module "hcloud_kube" {
//...
agent_nodepools = [
//...
{
name = "monitor"
server_type = "cx21"
location = "nbg1"
count = 1
private_interface = "ens10"
labels = [
"node.kubernetes.io/server-usage=monitor"
]
taints = [
"node-role.kubernetes.io/monitor:NoSchedule"
]
}
]
}
```
{{< /highlight >}}
### Prometheus Stack
When using k8s, the standard de facto is to install [Prometheus stack](https://artifacthub.io/packages/helm/prometheus-community/kube-prometheus-stack). It includes all necessary CRDs and components for a proper monitoring stack.
You have 2 choices to install it, are we using Flux or Terraform ? Flux include a full documentation of [how to install it with](https://fluxcd.io/flux/guides/monitoring/).
But remember previous chapter with the house analogies. I personally consider monitoring as part of my infrastructure. And I prefer to keep all my infrastructure configuration in Terraform, and only use Flux for apps. Moreover, the Prometheus stack is a pretty big Helm chart, and upgrading it can be a bit tricky. So I prefer to have a full control of it with Terraform.
Go back to 2nd Terraform project and let's apply this pretty big boy:
{{< highlight host="demo-kube-k3s" file="monitoring.tf" >}}
```tf
resource "kubernetes_namespace_v1" "monitoring" {
metadata {
name = "monitoring"
}
}
resource "helm_release" "kube_prometheus_stack" {
chart = "kube-prometheus-stack"
version = "58.1.0"
repository = "https://prometheus-community.github.io/helm-charts"
name = "kube-prometheus-stack"
namespace = kubernetes_namespace_v1.monitoring.metadata[0].name
set {
name = "prometheus.prometheusSpec.retention"
value = "15d"
}
set {
name = "prometheus.prometheusSpec.retentionSize"
value = "5GB"
}
set {
name = "prometheus.prometheusSpec.serviceMonitorSelectorNilUsesHelmValues"
value = "false"
}
set {
name = "prometheus.prometheusSpec.podMonitorSelectorNilUsesHelmValues"
value = "false"
}
set {
name = "prometheus.prometheusSpec.enableRemoteWriteReceiver"
value = "true"
}
set {
name = "prometheus.prometheusSpec.storageSpec.volumeClaimTemplate.spec.accessModes[0]"
value = "ReadWriteOnce"
}
set {
name = "prometheus.prometheusSpec.storageSpec.volumeClaimTemplate.spec.resources.requests.storage"
value = "8Gi"
}
set {
name = "prometheus.prometheusSpec.tolerations[0].key"
value = "node-role.kubernetes.io/monitor"
}
set {
name = "prometheus.prometheusSpec.tolerations[0].effect"
value = "NoSchedule"
}
set {
name = "prometheus.prometheusSpec.nodeSelector.node\\.kubernetes\\.io/server-usage"
value = "monitor"
}
set {
name = "alertmanager.enabled"
value = "false"
}
set {
name = "grafana.enabled"
value = "false"
}
set {
name = "grafana.forceDeployDatasources"
value = "true"
}
set {
name = "grafana.forceDeployDashboards"
value = "true"
}
}
```
{{< /highlight >}}
The application is deployed under `monitoring` namespace. It takes few minutes to be fully up and running. You can check the status with `kgpo -n monitoring`.
Important notes:
* We set a retention of **15 days** and **5 GB** of storage for Prometheus. Set this according to your needs.
* We allow `serviceMonitorSelector` and `podMonitorSelector` for scrapping monitor CRDs from all namespaces.
* We set `enableRemoteWriteReceiver` to allow remote write to databases for advanced specific usage, as by default Prometheus works with pull model on its own.
* As we don't set any storage class, the default one will be used, which is `local-path` when using K3s. If you want to use longhorn instead and benefit of automatic monitoring backup, you can set it with `...volumeClaimTemplate.spec.storageClassName`. But don't forget to deploy Longhorn manager by adding monitor toleration.
* As it's a huge chart, I want to minimize dependencies by disabling Grafana, as I prefer manage it separately. However, in this case we may set `grafana.forceDeployDatasources` and `grafana.forceDeployDashboards` to `true` in order to benefit of all included Kubernetes dashboards and automatic Prometheus datasource injection, and deploy them to config maps that can be used for next Grafana install by provisioning.
{{< alert >}}
As Terraform plan become slower and slower, you can directly apply one single resource by using `target` option. For example for applying only Prometheus stack, use `terraform apply -target=helm_release.kube_prometheus_stack`. It will save you a lot of time for testing.
{{< /alert >}}
And finally the ingress for external access:
{{< highlight host="demo-kube-k3s" file="monitoring.tf" >}}
```tf
resource "kubernetes_manifest" "prometheus_ingress" {
manifest = {
apiVersion = "traefik.io/v1alpha1"
kind = "IngressRoute"
metadata = {
name = "prometheus"
namespace = kubernetes_namespace_v1.monitoring.metadata[0].name
}
spec = {
entryPoints = ["websecure"]
routes = [
{
match = "Host(`prometheus.${var.domain}`)"
kind = "Rule"
middlewares = [
{
name = "middleware-ip"
namespace = "traefik"
},
{
name = "middleware-auth"
namespace = "traefik"
}
]
services = [
{
name = "prometheus-operated"
port = "http-web"
}
]
}
]
}
}
}
```
{{< /highlight >}}
No go to `prometheus.kube.rocks`, after login you should access the Prometheus UI. Check under `/targets` that all targets are up and running. In previous chapters, because we have enabled monitoring for all our apps supporting metrics, you should see following available targets:
* 1 instance of Traefik
* 1 instance of cert-manager
* 1 instance of each PostgreSQL primary and read
* 2 instances of Redis
* 5 instances of Longhorn manager
This is exactly how it works, the `ServiceMonitor` custom resource is responsible to discover and centralize all metrics for prometheus, allowing automatic discovery without touch the Prometheus config. Use `kg smon -A` to list them all.
### Monitoring Flux
There is one missing however, let's add monitoring for flux. Go back to flux project and push following manifests:
{{< highlight host="demo-kube-flux" file="clusters/demo/flux-add-ons/flux-monitoring.yaml" >}}
```yaml
---
apiVersion: source.toolkit.fluxcd.io/v1
kind: GitRepository
metadata:
name: flux-monitoring
namespace: flux-system
spec:
interval: 30m0s
ref:
branch: main
url: https://github.com/fluxcd/flux2-monitoring-example
---
apiVersion: kustomize.toolkit.fluxcd.io/v1
kind: Kustomization
metadata:
name: monitoring-config
namespace: flux-system
spec:
interval: 1h0m0s
path: ./monitoring/configs
prune: true
sourceRef:
kind: GitRepository
name: flux-monitoring
```
{{< /highlight >}}
The `spec.path` under `Kustomization` tells Flux to scrape [remote monitoring manifests](https://github.com/fluxcd/flux2-monitoring-example/tree/main/monitoring/configs), avoiding us to write all of them manually. It includes the `PodMonitor` as well as Grafana dashboards.
After some minutes, flux should be appearing in Prometheus targets.
[![Prometheus targets](prometheus-targets.png)](prometheus-targets.png)
### Grafana
We have the basement of our monitoring stack, it's time to get a UI to visualize all these metrics. Grafana is the most popular tool for that, and it's also available as Helm chart. Prepare some variables:
{{< highlight host="demo-kube-k3s" file="main.tf" >}}
```tf
variable "smtp_host" {
sensitive = true
}
variable "smtp_port" {
type = string
}
variable "smtp_user" {
type = string
sensitive = true
}
variable "smtp_password" {
type = string
sensitive = true
}
variable "grafana_db_password" {
type = string
sensitive = true
}
```
{{< /highlight >}}
Create `grafana` database through pgAdmin with same user and according `grafana_db_password`.
{{< highlight host="demo-kube-k3s" file="terraform.tfvars" >}}
```tf
smtp_host = "smtp.tem.scw.cloud"
smtp_port = "587"
smtp_user = "xxx"
smtp_password = "xxx"
```
{{< /highlight >}}
Apply next configuration to Terraform project:
{{< highlight host="demo-kube-k3s" file="grafana.tf" >}}
```tf
resource "helm_release" "grafana" {
chart = "grafana"
version = "7.3.8"
repository = "https://grafana.github.io/helm-charts"
name = "grafana"
namespace = kubernetes_namespace_v1.monitoring.metadata[0].name
set {
name = "serviceMonitor.enabled"
value = "true"
}
set {
name = "sidecar.datasources.enabled"
value = "true"
}
set {
name = "sidecar.dashboards.enabled"
value = "true"
}
set {
name = "env.GF_SERVER_DOMAIN"
value = var.domain
}
set {
name = "env.GF_SERVER_ROOT_URL"
value = "https://grafana.${var.domain}"
}
set {
name = "env.GF_SMTP_ENABLED"
value = "true"
}
set {
name = "env.GF_SMTP_HOST"
value = "${var.smtp_host}:${var.smtp_port}"
}
set {
name = "env.GF_SMTP_USER"
value = var.smtp_user
}
set {
name = "env.GF_SMTP_PASSWORD"
value = var.smtp_password
}
set {
name = "env.GF_SMTP_FROM_ADDRESS"
value = "grafana@${var.domain}"
}
set {
name = "env.GF_DATABASE_TYPE"
value = "postgres"
}
set {
name = "env.GF_DATABASE_HOST"
value = "postgresql-primary.postgres"
}
set {
name = "env.GF_DATABASE_NAME"
value = "grafana"
}
set {
name = "env.GF_DATABASE_USER"
value = "grafana"
}
set {
name = "env.GF_DATABASE_PASSWORD"
value = var.grafana_db_password
}
}
resource "kubernetes_manifest" "grafana_ingress" {
manifest = {
apiVersion = "traefik.io/v1alpha1"
kind = "IngressRoute"
metadata = {
name = "grafana"
namespace = kubernetes_namespace_v1.monitoring.metadata[0].name
}
spec = {
entryPoints = ["websecure"]
routes = [
{
match = "Host(`grafana.${var.domain}`)"
kind = "Rule"
services = [
{
name = "grafana"
port = "service"
}
]
}
]
}
}
}
```
{{< /highlight >}}
We enable both data source and dashboard sidecars by setting `sidecar.datasources.enabled` and `sidecar.dashboards.enabled`. These sidecars will automatically inject all dashboards and data sources from `ConfigMap`, like those provided by Prometheus stack and Flux. `serviceMonitor.enabled` will create a `ServiceMonitor` for Prometheus to scrape Grafana metrics.
Grafana should be deploying and migrate database successfully. Let's log in immediately after in `https://grafana.kube.rocks/login` with admin account. You can get the password with `kg secret -n monitoring grafana -o jsonpath='{.data.admin-password}' | base64 -d`.
### Native dashboards
If you go to `https://grafana.kube.rocks/dashboards`, you should see a many dashboards available that should already perfectly work, giving you a complete vision of:
* Some core components of K8s, like coredns, kube api server, all kubelets
* Detail of pods, namespace, workloads
* Nodes thanks to Node exporter
* Prometheus and Grafana itself stats
* Flux stats
#### Prometheus
[![Prometheus](dashboards-prometheus.png)](dashboards-prometheus.png)
#### Nodes
[![Nodes](dashboards-nodes.png)](dashboards-nodes.png)
#### Cluster
[![Cluster compute](dashboards-cluster-compute.png)](dashboards-cluster-compute.png)
[![Cluster networks](dashboards-cluster-network.png)](dashboards-cluster-network.png)
[![Pods](dashboards-pods.png)](dashboards-pods.png)
#### Kube components
[![Kube API Server](dashboards-api-server.png)](dashboards-api-server.png)
[![Kubelets](dashboards-kubelets.png)](dashboards-kubelets.png)
[![CoreDNS](dashboards-coredns.png)](dashboards-coredns.png)
#### Flux
[![Flux](dashboards-flux.png)](dashboards-flux.png)
### Additional dashboards
You can easily import some additional dashboards by importing them from Grafana marketplace or include them in `ConfigMap` for automatic provisioning.
#### Traefik
[Link](https://grafana.com/dashboards/17346)
[![Traefik](dashboards-traefik.png)](dashboards-traefik.png)
#### cert-manager
[Link](https://github.com/monitoring-mixins/website/blob/master/assets/cert-manager/dashboards/cert-manager.json)
[![cert-manager](dashboards-cert-manager.png)](dashboards-cert-manager.png)
#### Longhorn
[Link](https://grafana.com/dashboards/16888)
[![Longhorn](dashboards-longhorn.png)](dashboards-longhorn.png)
#### PostgreSQL
[Link](https://grafana.com/dashboards/9628)
[![PostgreSQL](dashboards-postgresql.png)](dashboards-postgresql.png)
#### Redis
[Link](https://grafana.com/dashboards/763)
[![Redis](dashboards-redis.png)](dashboards-redis.png)
#### Other core components
Some other core components like etcd, scheduler, proxy, and controller manager need to have metrics enabled to be scraped. See K3s docs or [this issue](https://github.com/k3s-io/k3s/issues/3619).
From Terraform Hcloud project, use `control_planes_custom_config` for expose all remaining metrics endpoint:
{{< highlight host="demo-kube-hcloud" file="kube.tf" >}}
```tf
module "hcloud_kube" {
//...
control_planes_custom_config = {
//...
etcd-expose-metrics = true,
kube-scheduler-arg = "bind-address=0.0.0.0",
kube-controller-manager-arg = "bind-address=0.0.0.0",
kube-proxy-arg = "metrics-bind-address=0.0.0.0",
}
//...
}
```
{{< /highlight >}}
{{< alert >}}
As above config applies only at cluster initialization, you may change directly `/etc/rancher/k3s/config.yaml` instead and restart K3s server.
{{< /alert >}}
## Logging
Last but not least, we need to add a logging stack. The most popular one is [Elastic Stack](https://www.elastic.co/elastic-stack), but it's very resource intensive. A more lightweight option is to use [Loki](https://grafana.com/oss/loki/), also part of Grafana Labs.
We need to have a S3 storage backend for long term storage. We will reuse same S3 compatible storage as longhorn backup here, but it's recommended to use a separate bucket and credentials.
### Loki
Let's install it on single binary mode:
{{< highlight host="demo-kube-k3s" file="logging.tf" >}}
```tf
resource "kubernetes_namespace_v1" "logging" {
metadata {
name = "logging"
}
}
resource "helm_release" "loki" {
chart = "loki"
version = "6.2.0"
repository = "https://grafana.github.io/helm-charts"
name = "loki"
namespace = kubernetes_namespace_v1.logging.metadata[0].name
set {
name = "loki.auth_enabled"
value = "false"
}
set {
name = "loki.compactor.retention_enabled"
value = "true"
}
set {
name = "loki.compactor.delete_request_store"
value = "s3"
}
set {
name = "loki.limits_config.retention_period"
value = "24h"
}
set {
name = "loki.storage.bucketNames.chunks"
value = var.s3_bucket
}
set {
name = "loki.storage.bucketNames.ruler"
value = var.s3_bucket
}
set {
name = "loki.storage.bucketNames.admin"
value = var.s3_bucket
}
set {
name = "loki.storage.s3.endpoint"
value = var.s3_endpoint
}
set {
name = "loki.storage.s3.region"
value = var.s3_region
}
set {
name = "loki.storage.s3.accessKeyId"
value = var.s3_access_key
}
set {
name = "loki.storage.s3.secretAccessKey"
value = var.s3_secret_key
}
set {
name = "loki.commonConfig.replication_factor"
value = "1"
}
set {
name = "loki.schemaConfig.configs[0].from"
value = "2024-01-01"
}
set {
name = "loki.schemaConfig.configs[0].store"
value = "tsdb"
}
set {
name = "loki.schemaConfig.configs[0].object_store"
value = "s3"
}
set {
name = "loki.schemaConfig.configs[0].schema"
value = "v13"
}
set {
name = "loki.schemaConfig.configs[0].index.prefix"
value = "index_"
}
set {
name = "loki.schemaConfig.configs[0].index.period"
value = "24h"
}
set {
name = "deploymentMode"
value = "SingleBinary"
}
set {
name = "read.replicas"
value = "0"
}
set {
name = "backend.replicas"
value = "0"
}
set {
name = "write.replicas"
value = "0"
}
set {
name = "singleBinary.replicas"
value = "1"
}
set {
name = "singleBinary.tolerations[0].key"
value = "node-role.kubernetes.io/monitor"
}
set {
name = "singleBinary.tolerations[0].effect"
value = "NoSchedule"
}
set {
name = "singleBinary.nodeSelector.node\\.kubernetes\\.io/server-usage"
value = "monitor"
}
set {
name = "monitoring.dashboards.namespace"
value = kubernetes_namespace_v1.monitoring.metadata[0].name
}
set {
name = "monitoring.selfMonitoring.enabled"
value = "false"
}
set {
name = "monitoring.selfMonitoring.grafanaAgent.installOperator"
value = "false"
}
set {
name = "monitoring.lokiCanary.enabled"
value = "false"
}
set {
name = "test.enabled"
value = "false"
}
set {
name = "chunksCache.enabled"
value = "false"
}
set {
name = "resultsCache.enabled"
value = "false"
}
set {
name = "lokiCanary.enabled"
value = "false"
}
}
```
{{< /highlight >}}
Use `loki.limits_config.retention_period` to set a maximum period retention. You need to set at least **2** for `write.replicas` or you'll get this 500 API error "*too many unhealthy instances in the ring*". As we force them to be deployed on storage nodes, be sure to have 2 storage nodes.
### Promtail
Okay so Loki is running but not fed, for that we'll deploy [Promtail](https://grafana.com/docs/loki/latest/clients/promtail/), which is a log collector that will be deployed on each node and collect logs from all pods and send them to Loki.
{{< highlight host="demo-kube-k3s" file="logging.tf" >}}
```tf
resource "helm_release" "promtail" {
chart = "promtail"
version = "6.15.5"
repository = "https://grafana.github.io/helm-charts"
name = "promtail"
namespace = kubernetes_namespace_v1.logging.metadata[0].name
set {
name = "tolerations[0].effect"
value = "NoSchedule"
}
set {
name = "tolerations[0].operator"
value = "Exists"
}
set {
name = "serviceMonitor.enabled"
value = "true"
}
}
```
{{< /highlight >}}
Ha, finally a simple Helm chart ! Seems too good to be true. We just have to add generic `tolerations` in order to deploy Promtail `DaemonSet` on every node for proper log scrapping.
### Loki data source
Because we are GitOps, we want to have all Loki dashboards and data sources automatically configured. It's already done for dashboards, but we need to add a data source.
Let's apply next Terraform resource:
{{< highlight host="demo-kube-k3s" file="logging.tf" >}}
```tf
resource "kubernetes_config_map_v1" "loki_grafana_datasource" {
metadata {
name = "loki-grafana-datasource"
namespace = kubernetes_namespace_v1.monitoring.metadata[0].name
labels = {
grafana_datasource = "1"
}
}
data = {
"datasource.yaml" = <<EOF
apiVersion: 1
datasources:
- name: Loki
type: loki
uid: loki
url: http://loki-gateway.logging/
access: proxy
EOF
}
}
```
{{< /highlight >}}
Now go to `https://grafana.kube.rocks/connections/datasources/edit/loki` and ensure that Loki respond correctly by click on *Test*.
Go can now admire logs in Loki UI at `https://grafana.kube.rocks/explore` !
[![Loki explore](loki-explore.png)](loki-explore.png)
### Loki dashboards
We have nothing more to do, all dashboards are already provided by Loki Helm chart.
[![Loki explore](dashboards-loki.png)](dashboards-loki.png)
## 5th check ✅
We now have a full monitoring suite with performant logging collector ! What a pretty massive subject done. At this stage, you have a good starting point to run many apps on your cluster with high scalability and observability. We are done for the pure **operational** part. It's finally time to tackle the **building** part for a complete development stack. Go [next part]({{< ref "/posts/16-a-beautiful-gitops-day-6" >}}) to begin with continuous integration.