41 KiB
title, date, description, tags, draft
title | date | description | tags | draft | |||||
---|---|---|---|---|---|---|---|---|---|
Setup a HA Kubernetes cluster Part IX - Code metrics with SonarQube & load testing | 2023-10-09 | Follow this opinionated guide as starter-kit for your own Kubernetes platform... |
|
true |
{{< lead >}} Be free from AWS/Azure/GCP by building a production grade On-Premise Kubernetes cluster on cheap VPS provider, fully GitOps managed, and with complete CI/CD tools 🎉 {{< /lead >}}
This is the Part IX of more global topic tutorial. [Back to first part]({{< ref "/posts/10-build-your-own-kubernetes-cluster" >}}) for intro.
Code Metrics
SonarQube is leading the code metrics industry for a long time, embracing full Open Core model, and the community edition it's completely free of charge even for commercial use. It covers advanced code analysis, code coverage, code duplication, code smells, security vulnerabilities, etc. It ensures high quality code and help to keep it that way.
SonarQube installation
SonarQube as its dedicated Helm chart which perfect for us. However, it's the most resource hungry component of our development stack so far (because Java project ? End of troll), so be sure to deploy it on almost empty free node, maybe a dedicated one. In fact, it's the last Helm chart for this tutorial, I promise!
Create dedicated database for SonarQube same as usual.
{{< highlight host="demo-kube-k3s" file="main.tf" >}}
variable "sonarqube_db_password" {
type = string
sensitive = true
}
{{< /highlight >}}
{{< highlight host="demo-kube-k3s" file="terraform.tfvars" >}}
sonarqube_db_password = "xxx"
{{< /highlight >}}
{{< highlight host="demo-kube-k3s" file="sonarqube.tf" >}}
resource "kubernetes_namespace_v1" "sonarqube" {
metadata {
name = "sonarqube"
}
}
resource "helm_release" "sonarqube" {
chart = "sonarqube"
version = "10.1.0+628"
repository = "https://SonarSource.github.io/helm-chart-sonarqube"
name = "sonarqube"
namespace = kubernetes_namespace_v1.sonarqube.metadata[0].name
set {
name = "prometheusMonitoring.podMonitor.enabled"
value = "true"
}
set {
name = "postgresql.enabled"
value = "false"
}
set {
name = "jdbcOverwrite.enabled"
value = "true"
}
set {
name = "jdbcOverwrite.jdbcUrl"
value = "jdbc:postgresql://postgresql-primary.postgres/sonarqube"
}
set {
name = "jdbcOverwrite.jdbcUsername"
value = "sonarqube"
}
set {
name = "jdbcOverwrite.jdbcPassword"
value = var.sonarqube_db_password
}
}
resource "kubernetes_manifest" "sonarqube_ingress" {
manifest = {
apiVersion = "traefik.io/v1alpha1"
kind = "IngressRoute"
metadata = {
name = "sonarqube"
namespace = kubernetes_namespace_v1.sonarqube.metadata[0].name
}
spec = {
entryPoints = ["websecure"]
routes = [
{
match = "Host(`sonarqube.${var.domain}`)"
kind = "Rule"
services = [
{
name = "sonarqube-sonarqube"
port = "http"
}
]
}
]
}
}
}
{{< /highlight >}}
Be sure to disable the PostgreSQL sub chart and use our self-hosted cluster with both postgresql.enabled
and jdbcOverwrite.enabled
. If needed, set proper tolerations
and nodeSelector
for deploying on a dedicated node.
The installation take many minutes, be patient. Once done, you can access SonarQube on https://sonarqube.kube.rocks
and login with admin
/ admin
.
Project configuration
Firstly create a new project and retain the project key which is his identifier. Then create a global analysis token named Concourse CI
that will be used for CI integration from your user account under /account/security
.
Now we need to create a Kubernetes secret which contains this token value for Concourse CI, for usage inside the pipeline. The token is the one generated above.
Add a new concourse terraform variable for the token:
{{< highlight host="demo-kube-k3s" file="main.tf" >}}
variable "concourse_analysis_token" {
type = string
sensitive = true
}
{{< /highlight >}}
{{< highlight host="demo-kube-k3s" file="terraform.tfvars" >}}
concourse_analysis_token = "xxx"
{{< /highlight >}}
The secret:
{{< highlight host="demo-kube-k3s" file="concourse.tf" >}}
resource "kubernetes_secret_v1" "concourse_sonarqube" {
metadata {
name = "sonarqube"
namespace = "concourse-main"
}
data = {
url = "https://sonarqube.${var.domain}"
analysis-token = var.concourse_analysis_token
}
depends_on = [
helm_release.concourse
]
}
{{< /highlight >}}
We are ready to tackle the pipeline for integration.
SonarScanner for .NET
As we use a dotnet project, we will use the official SonarQube scanner for .net. But sadly, as it's only a .NET CLI wrapper, it requires a java runtime to run and there is no official SonarQube docker image which contains both .NET SDK and Java runtime. But we have a CI now, so we can build our own QA image on our own private registry.
Create a new Gitea repo dedicated for any custom docker images with this one single Dockerfile:
{{< highlight host="demo-kube-images" file="dotnet-qa.dockerfile" >}}
FROM mcr.microsoft.com/dotnet/sdk:7.0
RUN apt-get update && apt-get install -y ca-certificates-java && apt-get install -y \
openjdk-17-jre-headless \
unzip \
&& rm -rf /var/lib/apt/lists/*
RUN dotnet tool install --global dotnet-sonarscanner
RUN dotnet tool install --global dotnet-coverage
ENV PATH="${PATH}:/root/.dotnet/tools"
{{< /highlight >}}
Note as we add the dotnet-sonarscanner
tool to the path, we can use it directly in the pipeline without any extra step. I'll also add dotnet-coverage
global tool for code coverage generation that we'll use later.
Then the pipeline:
{{< highlight host="demo-kube-flux" file="pipelines/images.yaml" >}}
resources:
- name: docker-images-git
type: git
icon: coffee
source:
uri: https://gitea.kube.rocks/kuberocks/docker-images
branch: main
- name: dotnet-qa-image
type: registry-image
icon: docker
source:
repository: ((registry.name))/kuberocks/dotnet-qa
tag: "7.0"
username: ((registry.username))
password: ((registry.password))
jobs:
- name: dotnet-qa
plan:
- get: docker-images-git
- task: build-image
privileged: true
config:
platform: linux
image_resource:
type: registry-image
source:
repository: concourse/oci-build-task
inputs:
- name: docker-images-git
outputs:
- name: image
params:
DOCKERFILE: docker-images-git/dotnet-qa.dockerfile
run:
path: build
- put: dotnet-qa-image
params:
image: image/image.tar
{{< /highlight >}}
Update the main.yaml
pipeline to add the new job, then trigger it manually from Concourse UI to add the new above pipeline:
{{< highlight host="demo-kube-flux" file="pipelines/main.yaml" >}}
#...
jobs:
- name: configure-pipelines
plan:
#...
- set_pipeline: images
file: ci/pipelines/images.yaml
{{< /highlight >}}
The pipeline should now start and build the image, trigger it manually if needed on Concourse UI. Once done, you can check it on your Gitea container packages that the new image gitea.kube.rocks/kuberocks/dotnet-qa
is here.
Concourse pipeline integration
It's finally time to reuse this QA image in our Concourse demo project pipeline. Update it accordingly:
{{< highlight host="demo-kube-flux" file="pipelines/demo.yaml" >}}
#...
jobs:
- name: build
plan:
- get: source-code
trigger: true
- task: build-source
config:
platform: linux
image_resource:
type: registry-image
source:
repository: ((registry.name))/kuberocks/dotnet-qa
tag: "7.0"
username: ((registry.username))
password: ((registry.password))
#...
run:
path: /bin/sh
args:
- -ec
- |
dotnet format --verify-no-changes
dotnet sonarscanner begin /k:"KubeRocks-Demo" /d:sonar.host.url="((sonarqube.url))" /d:sonar.token="((sonarqube.analysis-token))"
dotnet build -c Release
dotnet sonarscanner end /d:sonar.token="((sonarqube.analysis-token))"
dotnet publish src/KubeRocks.WebApi -c Release -o publish --no-restore --no-build
#...
{{< /highlight >}}
Note as we now use the dotnet-qa
image and surround the build step by dotnet sonarscanner begin
and dotnet sonarscanner end
commands with appropriate credentials allowing Sonar CLI to send report to our SonarQube instance. Trigger the pipeline manually, all should pass, and the result will be pushed to SonarQube.
Feature testing
Let's cover the feature testing by calling the API against a real database. This is the opportunity to cover the code coverage as well.
xUnit
First add a dedicated database for test in the docker compose file as we won't interfere with the development database:
{{< highlight host="kuberocks-demo" file="docker-compose.yml" >}}
version: "3"
services:
#...
db_test:
image: postgres:15
environment:
POSTGRES_USER: main
POSTGRES_PASSWORD: main
POSTGRES_DB: main
ports:
- 54320:5432
{{< /highlight >}}
Expose the startup service of minimal API:
{{< highlight host="kuberocks-demo" file="src/KubeRocks.WebApi/Program.cs" >}}
//...
public partial class Program
{
protected Program() { }
}
{{< /highlight >}}
Then add a testing JSON environment file for accessing our database db_test
from the docker-compose.yml:
{{< highlight host="kuberocks-demo" file="src/KubeRocks.WebApi/appsettings.Testing.json" >}}
{
"ConnectionStrings": {
"DefaultConnection": "Host=localhost:54320;Username=main;Password=main;Database=main;"
}
}
{{< /highlight >}}
Now the test project:
dotnet new xunit -o tests/KubeRocks.FeatureTests
dotnet sln add tests/KubeRocks.FeatureTests
dotnet add tests/KubeRocks.FeatureTests reference src/KubeRocks.WebApi
dotnet add tests/KubeRocks.FeatureTests package Microsoft.AspNetCore.Mvc.Testing
dotnet add tests/KubeRocks.FeatureTests package Respawn
dotnet add tests/KubeRocks.FeatureTests package FluentAssertions
The WebApplicationFactory
that will use our testing environment:
{{< highlight host="kuberocks-demo" file="tests/KubeRocks.FeatureTests/KubeRocksApiFactory.cs" >}}
using Microsoft.AspNetCore.Mvc.Testing;
using Microsoft.Extensions.Hosting;
namespace KubeRocks.FeatureTests;
public class KubeRocksApiFactory : WebApplicationFactory<Program>
{
protected override IHost CreateHost(IHostBuilder builder)
{
builder.UseEnvironment("Testing");
return base.CreateHost(builder);
}
}
{{< /highlight >}}
The base test class for all test classes that manages database cleanup thanks to Respawn
:
{{< highlight host="kuberocks-demo" file="tests/KubeRocks.FeatureTests/TestBase.cs" >}}
using KubeRocks.Application.Contexts;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using Npgsql;
using Respawn;
using Respawn.Graph;
namespace KubeRocks.FeatureTests;
[Collection("Sequencial")]
public class TestBase : IClassFixture<KubeRocksApiFactory>, IAsyncLifetime
{
protected KubeRocksApiFactory Factory { get; private set; }
protected TestBase(KubeRocksApiFactory factory)
{
Factory = factory;
}
public async Task RefreshDatabase()
{
using var scope = Factory.Services.CreateScope();
using var conn = new NpgsqlConnection(
scope.ServiceProvider.GetRequiredService<AppDbContext>().Database.GetConnectionString()
);
await conn.OpenAsync();
var respawner = await Respawner.CreateAsync(conn, new RespawnerOptions
{
TablesToIgnore = new Table[] { "__EFMigrationsHistory" },
DbAdapter = DbAdapter.Postgres
});
await respawner.ResetAsync(conn);
}
public Task InitializeAsync()
{
return RefreshDatabase();
}
public Task DisposeAsync()
{
return Task.CompletedTask;
}
}
{{< /highlight >}}
Note the Collection
attribute that will force the test classes to run sequentially, required as we will use the same database for all tests.
Finally, the tests for the 2 endpoints of our articles controller:
{{< highlight host="kuberocks-demo" file="tests/KubeRocks.FeatureTests/Articles/ArticlesListTests.cs" >}}
using System.Net.Http.Json;
using FluentAssertions;
using KubeRocks.Application.Contexts;
using KubeRocks.Application.Entities;
using KubeRocks.WebApi.Models;
using Microsoft.Extensions.DependencyInjection;
using static KubeRocks.WebApi.Controllers.ArticlesController;
namespace KubeRocks.FeatureTests.Articles;
public class ArticlesListTests : TestBase
{
public ArticlesListTests(KubeRocksApiFactory factory) : base(factory) { }
[Fact]
public async Task Can_Paginate_Articles()
{
using (var scope = Factory.Services.CreateScope())
{
var db = scope.ServiceProvider.GetRequiredService<AppDbContext>();
var user = db.Users.Add(new User
{
Name = "John Doe",
Email = "john.doe@email.com"
});
db.Articles.AddRange(Enumerable.Range(1, 50).Select(i => new Article
{
Title = $"Test Title {i}",
Slug = $"test-title-{i}",
Description = "Test Description",
Body = "Test Body",
Author = user.Entity,
}));
await db.SaveChangesAsync();
}
var response = await Factory.CreateClient().GetAsync("/api/Articles?page=1&size=20");
response.EnsureSuccessStatusCode();
var body = (await response.Content.ReadFromJsonAsync<ArticlesResponse>())!;
body.Articles.Count().Should().Be(20);
body.ArticlesCount.Should().Be(50);
body.Articles.First().Should().BeEquivalentTo(new
{
Title = "Test Title 50",
Description = "Test Description",
Body = "Test Body",
Author = new
{
Name = "John Doe"
},
});
}
[Fact]
public async Task Can_Get_Article()
{
using (var scope = Factory.Services.CreateScope())
{
var db = scope.ServiceProvider.GetRequiredService<AppDbContext>();
db.Articles.Add(new Article
{
Title = $"Test Title",
Slug = $"test-title",
Description = "Test Description",
Body = "Test Body",
Author = new User
{
Name = "John Doe",
Email = "john.doe@email.com"
}
});
await db.SaveChangesAsync();
}
var response = await Factory.CreateClient().GetAsync($"/api/Articles/test-title");
response.EnsureSuccessStatusCode();
var body = (await response.Content.ReadFromJsonAsync<ArticleDto>())!;
body.Should().BeEquivalentTo(new
{
Title = "Test Title",
Description = "Test Description",
Body = "Test Body",
Author = new
{
Name = "John Doe"
},
});
}
}
{{< /highlight >}}
Ensure all tests passes with dotnet test
.
CI tests & code coverage
Now we need to integrate the tests in our CI pipeline. As we testing with a real database, create a new demo_test
database through pgAdmin with basic test
/ test
credentials.
{{< alert >}} In real world scenario, you should use a dedicated database for testing, and not the same as production. {{< /alert >}}
Let's edit the pipeline accordingly for tests:
{{< highlight host="demo-kube-flux" file="pipelines/demo.yaml" >}}
#...
jobs:
- name: build
plan:
#...
- task: build-source
config:
#...
params:
ConnectionStrings__DefaultConnection: "Host=postgres-primary.postgres;Username=test;Password=test;Database=demo_test"
run:
path: /bin/sh
args:
- -ec
- |
dotnet format --verify-no-changes
dotnet sonarscanner begin /k:"KubeRocks-Demo" /d:sonar.host.url="((sonarqube.url))" /d:sonar.token="((sonarqube.analysis-token))" /d:sonar.cs.vscoveragexml.reportsPaths=coverage.xml
dotnet build -c Release
dotnet-coverage collect 'dotnet test -c Release --no-restore --no-build --verbosity=normal' -f xml -o 'coverage.xml'
dotnet sonarscanner end /d:sonar.token="((sonarqube.analysis-token))"
dotnet publish src/KubeRocks.WebApi -c Release -o publish --no-restore --no-build
#...
{{< /highlight >}}
Note as we already include code coverage by using dotnet-coverage
tool. Don't forget to precise the path of coverage.xml
to sonarscanner
CLI too. It's time to push our code with tests or trigger the pipeline manually to test our integration tests.
If all goes well, you should see the tests results on SonarQube with some coverage done:
Coverage detail:
You may exclude some files from analysis by adding some project properties:
{{< highlight host="kuberocks-demo" file="src/KubeRocks.Application/KubeRocks.Application.csproj" >}}
<Project Sdk="Microsoft.NET.Sdk">
<!-- ... -->
<ItemGroup>
<SonarQubeSetting Include="sonar.exclusions">
<Value>appsettings.Testing.json</Value>
</SonarQubeSetting>
</ItemGroup>
</Project>
{{< /highlight >}}
Same for coverage:
{{< highlight host="kuberocks-demo" file="src/KubeRocks.Application/KubeRocks.Application.csproj" >}}
<Project Sdk="Microsoft.NET.Sdk">
<!-- ... -->
<ItemGroup>
<SonarQubeSetting Include="sonar.coverage.exclusions">
<Value>Migrations/**/*</Value>
</SonarQubeSetting>
</ItemGroup>
</Project>
{{< /highlight >}}
Sonar Analyzer
You can enforce many default sonar rules by using Sonar Analyzer directly locally before any code push.
Create this file at the root of your solution for enabling Sonar Analyzer globally:
{{< highlight host="kuberocks-demo" file="Directory.Build.props" >}}
<Project>
<PropertyGroup>
<AnalysisLevel>latest-Recommended</AnalysisLevel>
<TreatWarningsAsErrors>true</TreatWarningsAsErrors>
<CodeAnalysisTreatWarningsAsErrors>true</CodeAnalysisTreatWarningsAsErrors>
</PropertyGroup>
<ItemGroup>
<PackageReference
Include="SonarAnalyzer.CSharp"
Version="9.8.0.76515"
PrivateAssets="all"
Condition="$(MSBuildProjectExtension) == '.csproj'"
/>
</ItemGroup>
</Project>
{{< /highlight >}}
Any rule violation is treated as error at project building, which block the CI before execution of tests. Use latest-All
as AnalysisLevel
for psychopath mode.
At this stage as soon this file is added, you should see some errors at building. If you use VSCode with correct C# extension, these errors will be highlighted directly in the editor. Here are some fixes:
{{< highlight host="kuberocks-demo" file="src/KubeRocks.WebApi/Program.cs" >}}
#...
builder.Host.UseSerilog((ctx, cfg) => cfg
.ReadFrom.Configuration(ctx.Configuration)
.Enrich.WithSpan()
.WriteTo.Console(
outputTemplate: "[{Timestamp:HH:mm:ss} {Level:u3}] |{TraceId}| {Message:lj}{NewLine}{Exception}",
// Enforce culture
formatProvider: CultureInfo.InvariantCulture
)
);
#...
{{< /highlight >}}
Delete WeatherForecastController.cs
.
{{< highlight host="kuberocks-demo" file="tests/KubeRocks.FeatureTests.csproj" >}}
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<!-- ... -->
<NoWarn>CA1707</NoWarn>
</PropertyGroup>
<!-- ... -->
</Project>
{{< /highlight >}}
Load testing
When it comes load testing, k6 is a perfect tool for this job and integrate with many real time series database integration like Prometheus or InfluxDB. As we already have Prometheus, let's use it and avoid us a separate InfluxDB installation. First be sure to allow remote write by enable enableRemoteWriteReceiver
in the Prometheus Helm chart. It should be already done if you follow this tutorial.
K6
We'll reuse our flux repo and add some manifests for defining the load testing scenario. Firstly describe the scenario inside ConfigMap
that scrape all articles and then each article:
{{< highlight host="demo-kube-flux" file="jobs/demo-k6.yaml" >}}
apiVersion: v1
kind: ConfigMap
metadata:
name: scenario
namespace: kuberocks
data:
script.js: |
import http from "k6/http";
import { check } from "k6";
export default function () {
const size = 10;
let page = 1;
let articles = []
do {
const res = http.get(`${__ENV.API_URL}/Articles?page=${page}&size=${size}`);
check(res, {
"status is 200": (r) => r.status == 200,
});
articles = res.json().articles;
page++;
articles.forEach((article) => {
const res = http.get(`${__ENV.API_URL}/Articles/${article.slug}`);
check(res, {
"status is 200": (r) => r.status == 200,
});
});
}
while (articles.length > 0);
}
{{< /highlight >}}
And add the k6 Job
in the same file and configure it for Prometheus usage and mounting above scenario:
{{< highlight host="demo-kube-flux" file="jobs/demo-k6.yaml" >}}
#...
---
apiVersion: batch/v1
kind: Job
metadata:
name: k6
namespace: kuberocks
spec:
ttlSecondsAfterFinished: 0
template:
spec:
restartPolicy: Never
containers:
- name: run
image: grafana/k6
env:
- name: API_URL
value: https://demo.kube.rocks/api
- name: K6_VUS
value: "30"
- name: K6_DURATION
value: 1m
- name: K6_PROMETHEUS_RW_SERVER_URL
value: http://prometheus-operated.monitoring:9090/api/v1/write
command:
["k6", "run", "-o", "experimental-prometheus-rw", "script.js"]
volumeMounts:
- name: scenario
mountPath: /home/k6
tolerations:
- key: node-role.kubernetes.io/runner
operator: Exists
effect: NoSchedule
nodeSelector:
node-role.kubernetes.io/runner: "true"
volumes:
- name: scenario
configMap:
name: scenario
{{< /highlight >}}
Use appropriate tolerations
and nodeSelector
for running the load testing in a node which have free CPU resource. You can play with K6_VUS
and K6_DURATION
environment variables in order to change the level of load testing.
Then you can launch the job with ka jobs/demo-k6.yaml
. Check quickly that the job is running via klo -n kuberocks job/k6
:
/\ |‾‾| /‾‾/ /‾‾/
/\ / \ | |/ / / /
/ \/ \ | ( / ‾‾\
/ \ | |\ \ | (‾) |
/ __________ \ |__| \__\ \_____/ .io
execution: local
script: script.js
output: Prometheus remote write (http://prometheus-operated.monitoring:9090/api/v1/write)
scenarios: (100.00%) 1 scenario, 30 max VUs, 1m30s max duration (incl. graceful stop):
* default: 30 looping VUs for 1m0s (gracefulStop: 30s)
After 1 minute of run, job should finish and show some raw result:
✓ status is 200
checks.........................: 100.00% ✓ 17748 ✗ 0
data_received..................: 404 MB 6.3 MB/s
data_sent......................: 1.7 MB 26 kB/s
http_req_blocked...............: avg=242.43µs min=223ns med=728ns max=191.27ms p(90)=1.39µs p(95)=1.62µs
http_req_connecting............: avg=13.13µs min=0s med=0s max=9.48ms p(90)=0s p(95)=0s
http_req_duration..............: avg=104.22ms min=28.9ms med=93.45ms max=609.86ms p(90)=162.04ms p(95)=198.93ms
{ expected_response:true }...: avg=104.22ms min=28.9ms med=93.45ms max=609.86ms p(90)=162.04ms p(95)=198.93ms
http_req_failed................: 0.00% ✓ 0 ✗ 17748
http_req_receiving.............: avg=13.76ms min=32.71µs med=6.49ms max=353.13ms p(90)=36.04ms p(95)=51.36ms
http_req_sending...............: avg=230.04µs min=29.79µs med=93.16µs max=25.75ms p(90)=201.92µs p(95)=353.61µs
http_req_tls_handshaking.......: avg=200.57µs min=0s med=0s max=166.91ms p(90)=0s p(95)=0s
http_req_waiting...............: avg=90.22ms min=14.91ms med=80.76ms max=609.39ms p(90)=138.3ms p(95)=169.24ms
http_reqs......................: 17748 276.81409/s
iteration_duration.............: avg=5.39s min=3.97s med=5.35s max=7.44s p(90)=5.94s p(95)=6.84s
iterations.....................: 348 5.427727/s
vus............................: 7 min=7 max=30
vus_max........................: 30 min=30 max=30
As we use Prometheus for outputting the result, we can visualize it easily with Grafana. You just have to import this dashboard:
As we use Kubernetes, increase the loading performance horizontally is dead easy. Go to the deployment configuration of demo app for increasing replicas count, as well as Traefik, and compare the results.
Load balancing database
So far, we only load balanced the stateless API, but what about the database part ? We have set up a replicated PostgreSQL cluster, however we have no use of the replica that stay sadly idle. But for that we have to distinguish write queries from scalable read queries.
We can make use of the Bitnami PostgreSQL HA instead of simple one. It adds the new component Pgpool-II as main load balancer and detect failover. It's able to separate in real time write queries from read queries and send them to the master or the replica. The advantage: works natively for all apps without any changes. The cons: it consumes far more resources and add a new component to maintain.
A 2nd solution is to separate query typologies from where it counts: the application. It requires some code changes, but it's clearly a far more efficient solution. Let's do this way.
As Npgsql support load balancing natively, we don't need to add any Kubernetes service. We just have to create a clear distinction between read and write queries. One simple way is to create a separate RO DbContext
.
{{< highlight host="kuberocks-demo" file="src/KubeRocks.Application/Contexts/AppRoDbContext.cs" >}}
namespace KubeRocks.Application.Contexts;
using KubeRocks.Application.Entities;
using Microsoft.EntityFrameworkCore;
public class AppRoDbContext : DbContext
{
public DbSet<User> Users => Set<User>();
public DbSet<Article> Articles => Set<Article>();
public DbSet<Comment> Comments => Set<Comment>();
public AppRoDbContext(DbContextOptions<AppRoDbContext> options) : base(options)
{
}
}
{{< /highlight >}}
Register it in DI:
{{< highlight host="kuberocks-demo" file="src/KubeRocks.Application/Extensions/ServiceExtensions.cs" >}}
public static class ServiceExtensions
{
public static IServiceCollection AddKubeRocksServices(this IServiceCollection services, IConfiguration configuration)
{
return services
//...
.AddDbContext<AppRoDbContext>((options) =>
{
options.UseNpgsql(
configuration.GetConnectionString("DefaultRoConnection")
??
configuration.GetConnectionString("DefaultConnection")
);
});
}
}
{{< /highlight >}}
We fall back to the RW connection string if the RO one is not defined. Then use it in the ArticlesController
which as only read endpoints:
{{< highlight host="kuberocks-demo" file="src/KubeRocks.WebApi/Controllers/ArticlesController.cs" >}}
//...
public class ArticlesController
{
private readonly AppRoDbContext _context;
//...
public ArticlesController(AppRoDbContext context)
{
_context = context;
}
//...
}
{{< /highlight >}}
Push and let it pass the CI. In the meantime, add the new RO connection:
{{< highlight host="demo-kube-flux" file="clusters/demo/kuberocks/deploy-demo.yaml" >}}
# ...
spec:
# ...
template:
# ...
spec:
# ...
containers:
- name: api
# ...
env:
- name: DB_PASSWORD
valueFrom:
secretKeyRef:
name: demo-db
key: password
- name: ConnectionStrings__DefaultConnection
value: Host=postgresql-primary.postgres;Username=demo;Password='$(DB_PASSWORD)';Database=demo;
- name: ConnectionStrings__DefaultRoConnection
value: Host=postgresql-primary.postgres,postgresql-read.postgres;Username=demo;Password='$(DB_PASSWORD)';Database=demo;Load Balance Hosts=true;
#...
{{< /highlight >}}
We simply have to add multiple host like postgresql-primary.postgres,postgresql-read.postgres
for the RO connection string and enable LB mode with Load Balance Hosts=true
.
Once deployed, relaunch a load test with K6 and admire the DB load balancing in action on both storage servers with htop
or directly compute pods by namespace in Grafana.
Frontend
Let's finish this guide by a quick view of SPA frontend development as a separate project from backend.
Vue TS
Create a new Vue.js project from vitesse starter kit (be sure to have pnpm, just a matter of scoop/brew install pnpm
):
npx degit antfu/vitesse-lite kuberocks-demo-ui
cd kuberocks-demo-ui
git init
git add .
git commit -m "Initial commit"
pnpm i
pnpm dev
Should launch app in http://localhost:3333/
. Create a new kuberocks-demo-ui
Gitea repo and push this code into it. Now lets quick and done for API calls.
Get around CORS and HTTPS with YARP
As always when frontend is separated from backend, we have to deal with CORS. But I prefer to have one single URL for frontend + backend and get rid of CORS problem by simply call under /api
path. Moreover, it'll be production ready without need to manage any Vite
variable for API URL and we'll get HTTPS provided by dotnet. Back to API project.
dotnet add src/KubeRocks.WebApi package Yarp.ReverseProxy
{{< highlight host="kuberocks-demo" file="src/KubeRocks.WebApi/Program.cs" >}}
//...
var builder = WebApplication.CreateBuilder(args);
builder.Services.AddReverseProxy()
.LoadFromConfig(builder.Configuration.GetSection("ReverseProxy"));
//...
var app = builder.Build();
app.MapReverseProxy();
//...
app.UseRouting();
//...
{{< /highlight >}}
Note as we must add app.UseRouting();
too in order to get Swagger UI working.
The proxy configuration (only for development):
{{< highlight host="kuberocks-demo" file="src/KubeRocks.WebApi/appsettings.Development.json" >}}
{
//...
"ReverseProxy": {
"Routes": {
"ServerRouteApi": {
"ClusterId": "Server",
"Match": {
"Path": "/api/{**catch-all}"
},
"Transforms": [
{
"PathRemovePrefix": "/api"
}
]
},
"ClientRoute": {
"ClusterId": "Client",
"Match": {
"Path": "{**catch-all}"
}
}
},
"Clusters": {
"Client": {
"Destinations": {
"Client1": {
"Address": "http://localhost:3333"
}
}
},
"Server": {
"Destinations": {
"Server1": {
"Address": "https://localhost:7159"
}
}
}
}
}
}
{{< /highlight >}}
Now your frontend app should appear under https://localhost:7159
, and API calls under https://localhost:7159/api
. We now benefit from HTTPS for all app. Push API code.
Typescript API generator
As we use OpenAPI, it's possible to generate typescript client for API calls. Add this package:
pnpm add openapi-typescript -D
pnpm add openapi-typescript-fetch
Before generate the client model, go back to backend for fixing default nullable reference from Swashbuckle.AspNetCore
:
{{< highlight host="kuberocks-demo" file="src/KubeRocks.WebApi/Filters/RequiredNotNullableSchemaFilter.cs" >}}
using Microsoft.OpenApi.Models;
using Swashbuckle.AspNetCore.SwaggerGen;
namespace KubeRocks.WebApi.Filters;
public class RequiredNotNullableSchemaFilter : ISchemaFilter
{
public void Apply(OpenApiSchema schema, SchemaFilterContext context)
{
if (schema.Properties is null)
{
return;
}
var notNullableProperties = schema
.Properties
.Where(x => !x.Value.Nullable && !schema.Required.Contains(x.Key))
.ToList();
foreach (var property in notNullableProperties)
{
schema.Required.Add(property.Key);
}
}
}
{{< /highlight >}}
{{< highlight host="kuberocks-demo" file="src/KubeRocks.WebApi/Program.cs" >}}
//...
builder.Services.AddSwaggerGen(o =>
{
o.SupportNonNullableReferenceTypes();
o.SchemaFilter<RequiredNotNullableSchemaFilter>();
});
//...
{{< /highlight >}}
Sadly, without this boring step, many attributes will be nullable in the generated model, which must not be the case. Now generate the model:
{{< highlight host="kuberocks-demo-ui" file="package.json" >}}
{
//...
"scripts": {
//...
"openapi": "openapi-typescript http://localhost:5123/api/v1/swagger.json --output src/api/openapi.ts"
},
//...
}
{{< /highlight >}}
Use the HTTP version of swagger as you'll get a self certificate error. The use pnpm openapi
to generate full TS model. Finally, describe API fetchers like so:
{{< highlight host="kuberocks-demo-ui" file="src/api/index.ts" >}}
import { Fetcher } from 'openapi-typescript-fetch'
import type { components, paths } from './openapi'
const fetcher = Fetcher.for<paths>()
type ArticleList = components['schemas']['ArticleListDto']
type Article = components['schemas']['ArticleDto']
const getArticles = fetcher.path('/api/Articles').method('get').create()
const getArticleBySlug = fetcher.path('/api/Articles/{slug}').method('get').create()
export type { Article, ArticleList }
export {
getArticles,
getArticleBySlug,
}
{{< /highlight >}}
We are now fully typed compliant with the API.
Call the API
Let's create a pretty basic list + detail vue pages:
{{< highlight host="kuberocks-demo-ui" file="src/pages/articles/index.vue" >}}
<script lang="ts" setup>
import { getArticles } from '~/api'
import type { ArticleList } from '~/api'
const articles = ref<ArticleList[]>([])
async function loadArticles() {
const { data } = await getArticles({
page: 1,
size: 10,
})
articles.value = data.articles
}
loadArticles()
</script>
<template>
<RouterLink
v-for="(article, i) in articles"
:key="i"
:to="`/articles/${article.slug}`"
>
<h3>{{ article.title }}</h3>
</RouterLink>
</template>
{{< /highlight >}}
{{< highlight host="kuberocks-demo-ui" file="src/pages/articles/[slug].vue" >}}
<script lang="ts" setup>
import { getArticleBySlug } from '~/api'
import type { Article } from '~/api'
const props = defineProps<{ slug: string }>()
const article = ref<Article>()
const router = useRouter()
async function getArticle() {
const { data } = await getArticleBySlug({ slug: props.slug })
article.value = data
}
getArticle()
</script>
<template>
<div v-if="article">
<h1>{{ article.title }}</h1>
<p>{{ article.description }}</p>
<div>{{ article.body }}</div>
<div>
<button m-3 mt-8 text-sm btn @click="router.back()">
Back
</button>
</div>
</div>
</template>
{{< /highlight >}}
It should work flawlessly.
Frontend CI/CD
The CI frontend is far simpler than backend. Create a new demo-ui
pipeline:
{{< highlight host="demo-kube-flux" file="pipelines/demo-ui.yaml" >}}
resources:
- name: version
type: semver
source:
driver: git
uri: ((git.url))/kuberocks/demo-ui
branch: main
file: version
username: ((git.username))
password: ((git.password))
git_user: ((git.git-user))
commit_message: ((git.commit-message))
- name: source-code
type: git
icon: coffee
source:
uri: ((git.url))/kuberocks/demo-ui
branch: main
username: ((git.username))
password: ((git.password))
- name: docker-image
type: registry-image
icon: docker
source:
repository: ((registry.name))/kuberocks/demo-ui
tag: latest
username: ((registry.username))
password: ((registry.password))
jobs:
- name: build
plan:
- get: source-code
trigger: true
- task: build-source
config:
platform: linux
image_resource:
type: registry-image
source:
repository: node
tag: 18-buster
inputs:
- name: source-code
path: .
outputs:
- name: dist
path: dist
caches:
- path: .pnpm-store
run:
path: /bin/sh
args:
- -ec
- |
corepack enable
corepack prepare pnpm@latest-8 --activate
pnpm config set store-dir .pnpm-store
pnpm i
pnpm lint
pnpm build
- task: build-image
privileged: true
config:
platform: linux
image_resource:
type: registry-image
source:
repository: concourse/oci-build-task
inputs:
- name: source-code
path: .
- name: dist
path: dist
outputs:
- name: image
run:
path: build
- put: version
params: { bump: patch }
- put: docker-image
params:
additional_tags: version/number
image: image/image.tar
{{< /highlight >}}
{{< highlight host="demo-kube-flux" file="pipelines/demo-ui.yaml" >}}
#...
jobs:
- name: configure-pipelines
plan:
#...
- set_pipeline: demo-ui
file: ci/pipelines/demo-ui.yaml
{{< /highlight >}}
Apply it and put this nginx Dockerfile
on frontend root project:
{{< highlight host="kuberocks-demo-ui" file="Dockerfile" >}}
FROM nginx:alpine
COPY docker/nginx.conf /etc/nginx/conf.d/default.conf
COPY dist /usr/share/nginx/html
{{< /highlight >}}
After push all CI should build correctly. Then the image policy for auto update:
{{< highlight host="demo-kube-flux" file="clusters/demo/kuberocks/images-demo-ui.yaml" >}}
apiVersion: image.toolkit.fluxcd.io/v1beta1
kind: ImageRepository
metadata:
name: demo-ui
namespace: flux-system
spec:
image: gitea.kube.rocks/kuberocks/demo-ui
interval: 1m0s
secretRef:
name: dockerconfigjson
---
apiVersion: image.toolkit.fluxcd.io/v1beta1
kind: ImagePolicy
metadata:
name: demo-ui
namespace: flux-system
spec:
imageRepositoryRef:
name: demo-ui
namespace: flux-system
policy:
semver:
range: 0.0.x
{{< /highlight >}}
The deployment:
{{< highlight host="demo-kube-flux" file="clusters/demo/kuberocks/deploy-demo-ui.yaml" >}}
apiVersion: apps/v1
kind: Deployment
metadata:
name: demo-ui
namespace: kuberocks
spec:
replicas: 2
selector:
matchLabels:
app: demo-ui
template:
metadata:
labels:
app: demo-ui
spec:
imagePullSecrets:
- name: dockerconfigjson
containers:
- name: front
image: gitea.okami101.io/kuberocks/demo-ui:latest # {"$imagepolicy": "flux-system:image-demo-ui"}
ports:
- containerPort: 80
---
apiVersion: v1
kind: Service
metadata:
name: demo-ui
namespace: kuberocks
spec:
selector:
app: demo-ui
ports:
- name: http
port: 80
{{< /highlight >}}
After push, the demo UI container should be deployed. The very last step is to add a new route to existing IngressRoute
for frontend:
{{< highlight host="demo-kube-flux" file="clusters/demo/kuberocks/deploy-demo.yaml" >}}
#...
apiVersion: traefik.io/v1alpha1
kind: IngressRoute
#...
spec:
#...
routes:
- match: Host(`demo.kube.rocks`)
kind: Rule
services:
- name: demo-ui
port: http
- match: Host(`demo.kube.rocks`) && PathPrefix(`/api`)
#...
{{< /highlight >}}
Go to https://demo.kube.rocks
to confirm if both app front & back are correctly connected !
Final check 🎊🏁🎊
Congratulation if you're getting that far !!!
We have made an enough complete tour of Kubernetes cluster building on full GitOps mode.